

Roteiro elaborado com base na documentação que acompanha o conjunto por:

## Maximo F. da Silveira - UFRJ

## Tópicos relacionados

Campo elétrico, viscosidade, lei de Stoke, método goticular, carga do elétron.

## Princípio

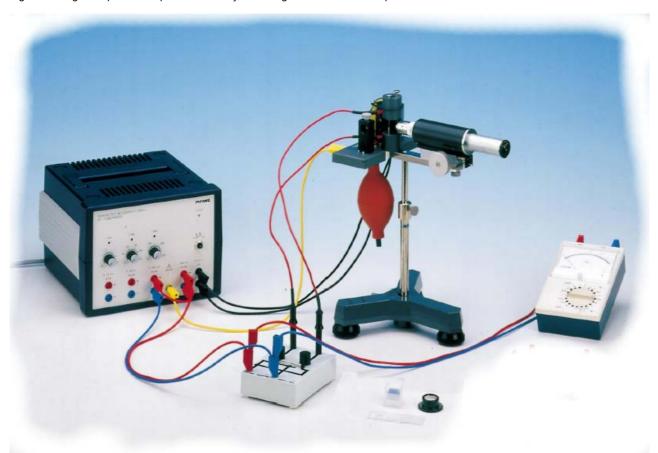
Gotículas de óleo carregadas, submetidas à ação da gravidade e de um campo elétrico entre as placas de um capacitor, são aceleradas pela aplicação de uma tensão. A carga elementar é determinada a partir das medidas de velocidades de descida e subida das gotículas.

#### Equipamento

| Base tripé -PASS-                      | 02002.55 | 1 |
|----------------------------------------|----------|---|
| Tubo                                   | 02060.00 | 1 |
| Nível circular                         | 02122.00 | 1 |
| Cronômetro, digital, 1/100s            | 03071.01 | 1 |
| Chave comutadora                       | 06034.03 | 1 |
| Cabo de conexão, 32A, 25 cm, vermelho. | 07360.01 | 1 |
| Cabo de conexão, 32A, 75 cm, vermelho. | 07362.01 | 1 |
| Cabo de conexão, 32A, 75 cm, amarelo.  | 07362.02 | 1 |
| Cabo de conexão, 32A, 75 cm, azul      | 07362.04 | 1 |
|                                        |          |   |

| Cabo de conexão, 32A, 75 cm, preto       | 07362.05 | 2  |
|------------------------------------------|----------|----|
| (Fonte radioativa, Am-241,74kBq          | 09047.51 | 1) |
| Aparatos de Millikan                     | 09070.00 | 1  |
| Fonte de alimentação, 0600 VDC e         | 13672.98 | 1  |
| FlexCam básica                           | 42446.2C | 1  |
| Micrometro de estágios, 1 mm - 100 div.  | 62046.00 | 1  |
| Lâminas de vidro p/ proteção - 18x18 mm, |          |    |
| 50 pcs.                                  | 64685.00 | 1  |

#### **Problemas**


- 1. Medição dos tempos de subida e descida das gotículas de óleo, com diferentes cargas e em diferentes tensões.
- 2. Determinação dos raios e da carga das gotículas.

## Montagem e procedimentos

A montagem experimental pode ser vista na Fig. 1. A fonte de alimentação fornece as tensões necessárias para o aparato Millikan. O sistema de iluminação é ligado às saídas de 6,3 V - AC.

Calibra-se inicialmente o micrômetro da ocular. Liga-se a saída de tensão fixa (300 Vdc) em série com a de tensão variável (0...300 V-DC) de modo a se obter tensões superiores a 300 V-DC. A chave comutadora é usada para inverter as polaridades do capacitor.

Fig. 1: Montagem experimental para determinação da carga elementar com o aparato de Millikan.





- Ajuste a tensão do capacitor para um valor entre 300 e 500 V.
- Borrife gotículas de óleo entre as placas do capacitor com o soprador manual do aparato.
- Observando pela luneta selecione uma gotícula em particular e, atuando com a chave comutadora, faça a gotícula se mover entre as graduações mais alta e mais baixa do micrômetro ocular. Corrija o foco do microscópio se necessário.

Observe os seguintes critérios ao selecionar uma gotícula:

- A gotícula não deve se mover muito rapidamente (deve se deslocar 30 div. em 1 ou 3 s), ou seja, deve possuir uma pequena carga.
- A gotícula não deve ser mover muito lentamente e não exibir movimentos enviesados. Aumente a tensão do capacitor nessas situações.
- Some os tempos de algumas subidas com o primeiro cronômetro.
- Some os tempos de algumas descidas com o segundo cronômetro.
- Os tempos somados devem ser superiores a 5 s em ambos os casos.

#### Teoria e desenvolvimento

São observados os movimentos de subida e descida de uma gotícula de óleo carregada no campo elétrico de um capacitor e as respectivas velocidades determinadas.

Velocidade de descida  $\upsilon_1$  Velocidade de subida  $\upsilon_2$  Tensão do capacitor U Carga na gotícula Q = n.e Raio da gotícula r

Separação das placas do capacitor  $d = 2,50 \pm 0,01$  mm Densidade do óleo de silicone  $\rho_1 = 1,03 \times 10^3 \text{ kg/m}^3$ Viscosidade do ar  $\eta = 1,82 \times 10^{-5} \text{ kg(m.s)}^{-1}$ Aceleração da gravidade  $g = 9,81 \text{ ms}^{-2}$ Densidade do ar  $\rho_2 = 1,293 \text{ kg/m}^3$ 

A força F, experimentada por uma esfera de raio r e velocidade  $\upsilon$ , em um meio fluido de viscosidade  $\eta$ , é dada por:

$$F_S = 6\pi r. \eta. \upsilon$$
 (Lei de Stoke) (1)

A gota esférica de massa m, volume V e densidade  $\rho_1$  está também submetida ao campo gravitacional terrestre,

$$F_G = m.g = \rho_1 V.g \tag{2}$$

A força de empuxo é dada por:

$$F_E = \rho_2 V.g \tag{3}$$

E a força devida ao campo elétrico do capacitor

$$F_{Q} = Q.E = Q.U/d \tag{4}$$

As velocidades de descida e subida são obtidas em regime de equilíbrio, ou seja, quando a resultante das forças que atuam sobre a partícula carregada for nula.

$$v_1 = \frac{1}{6\pi r \eta} \left[ Q.E + \frac{4}{3}\pi r^3 g(\rho_1 - \rho_2) \right]$$
 (5)

$$v_2 = \frac{1}{6\pi r \eta} \left[ Q.E - \frac{4}{3} \pi r^3 g(\rho_1 - \rho_2) \right]$$
 (6)

Subtraindo e somando as eqs. (5) e (6) obtemos a carga Q e o raio r das gotículas:

$$Q = C_1 \cdot \frac{\upsilon_1 + \upsilon_2}{U} \sqrt{\upsilon_1 - \upsilon_2} \tag{7}$$

onde: 
$$C_1 = \frac{9}{2} \pi d \cdot \sqrt{\frac{\eta^3}{g(\rho_1 - \rho_2)}}$$

$$C_1 = 2.73 \times 10^{-11} \text{ kg.m (m.s)}^{-1/2}$$

$$r = C_2 \cdot \sqrt{\nu_1 - \nu_2} \tag{8}$$

onde: 
$$C_2 = \frac{3}{2} \cdot \sqrt{\frac{\eta}{g(\rho_1 - \rho_2)}}$$

$$C_2 = 6.37 \times 10^{-5} (\text{m.s})^{1/2}$$

Calibração do micrômetro ocular: Escala com 30 div. = 0,89 mm

As medidas dos tempos de descida e subida para 20 gotículas diferentes estão organizados na Tabela 1.

O gráfico da Fig. 2 demonstra que as gotículas possuem carga Q cujos valores são múltiplos da carga elementar e

$$Q = n.e$$

Tomando a média, como valor mais provável para a carga elementar, obtemos

$$e = 1.68 \times 10^{-19} \text{ A.s}$$

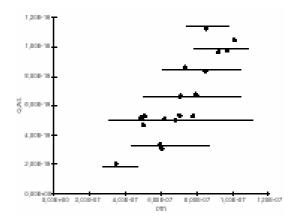



Fig. 2: Medidas de várias gotículas para determinação da carga elementar pelo método de Millikan.

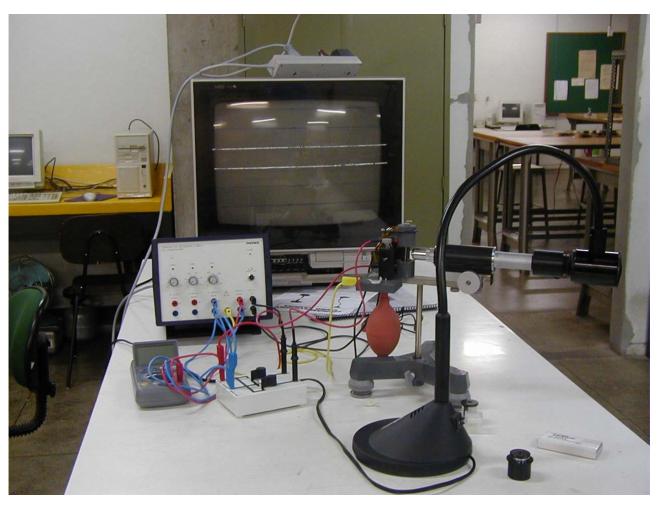


| U   | <b>t</b> <sub>1</sub> | S <sub>1</sub> | t <sub>2</sub> | S <sub>2</sub> | S <sub>1</sub> | S <sub>2</sub> | $10^4.v_1$ | $10^4.v_2$ | $10^4(v_1-v_2)$ | 10 <sup>7</sup> .r | 10 <sup>19</sup> .Q | n | 10 <sup>19</sup> .e |
|-----|-----------------------|----------------|----------------|----------------|----------------|----------------|------------|------------|-----------------|--------------------|---------------------|---|---------------------|
| (V) | (s)                   | div.           | (s)            | div.           | (mm)           | (mm)           | (m/s)      | (m/s)      | (m/s)           | (m)                | (As)                |   | (As)                |
| 300 | 9,6                   | 150            | 13,5           | 150            | 4,45           | 4,45           | 4,64       | 3,30       | 1,34            | 7,37               | 8,54                | 5 | 1,71                |
| 300 | 7,0                   | 90             | 11,2           | 120            | 2,67           | 3,56           | 3,81       | 3,18       | 0,636           | 5,08               | 5,19                | 3 | 1,73                |
| 300 | 5,8                   | 90             | 7,1            | 60             | 2,67           | 1,78           | 4,60       | 2,51       | 2,10            | 9,22               | 9,57                | 6 | 1,60                |
| 300 | 7,4                   | 90             | 8,8            | 60             | 2,67           | 1,78           | 3,61       | 2,02       | 1,59            | 8,02               | 6,59                | 4 | 1,65                |
| 300 | 6,9                   | 90             | 8,2            | 90             | 2,67           | 2,67           | 3,87       | 3,26       | 0,613           | 4,99               | 5,19                | 3 | 1,73                |
| 300 | 5,6                   | 90             | 8,0            | 60             | 2,67           | 1,78           | 4,77       | 2,23       | 2,54            | 10,2               | 10,4                | 6 | 1,73                |
| 400 | 6,9                   | 90             | 9,8            | 90             | 2,67           | 2,67           | 3,87       | 2,72       | 1,15            | 6,82               | 4,92                | 3 | 1,64                |
| 400 | 6,4                   | 90             | 8,3            | 90             | 2,67           | 2,67           | 4,17       | 3,22       | 0,955           | 6,23               | 5,04                | 3 | 1,68                |
| 400 | 5,0                   | 90             | 5,0            | 60             | 2,67           | 1,78           | 5,34       | 3,56       | 1,78            | 8,50               | 8,28                | 5 | 1,66                |
| 400 | 7,0                   | 120            | 7,9            | 120            | 3,56           | 3,56           | 5,09       | 4,51       | 0,579           | 4,85               | 5,09                | 3 | 1,70                |
| 400 | 6,0                   | 60             | 8,5            | 60             | 1,78           | 1,78           | 2,97       | 2,09       | 0,873           | 5,95               | 3,30                | 2 | 1,65                |
| 400 | 5,5                   | 90             | 7,4            | 90             | 2,67           | 2,67           | 4,85       | 3,61       | 1,25            | 7,11               | 6,59                | 4 | 1,65                |
| 400 | 4,7                   | 60             | 7,8            | 60             | 1,78           | 1,78           | 3,79       | 2,28       | 1,51            | 7,82               | 5,19                | 3 | 1,73                |
| 400 | 5,2                   | 120            | 10,6           | 180            | 3,56           | 5,34           | 6,85       | 5,04       | 1,81            | 8,57               | 11,1                | 7 | 1,59                |
| 400 | 6,5                   | 60             | 9,7            | 60             | 1,78           | 1,78           | 2,74       | 1,84       | 0,903           | 6,05               | 3,03                | 2 | 1,52                |
| 500 | 6,4                   | 120            | 7,2            | 120            | 3,56           | 3,56           | 5,56       | 4,94       | 0,618           | 5,01               | 4,61                | 3 | 1,54                |
| 500 | 5,5                   | 90             | 9,8            | 120            | 2,67           | 3,56           | 4,85       | 3,63       | 1,22            | 7,04               | 5,23                | 3 | 1,74                |
| 500 | 5,2                   | 60             | 5,7            | 60             | 1,78           | 1,78           | 3,42       | 3,12       | 0,3,00          | 3,49               | 2,00                | 1 | 2,00                |
| 500 | 6,4                   | 120            | 8,9            | 120            | 3,56           | 3,56           | 5,56       | 4,00       | 1,56            | 7,96               | 6,67                | 4 | 1,67                |
| 500 | 5,2                   | 120            | 5,9            | 90             | 3,56           | 2,67           | 6,85       | 4,53       | 2,32            | 9,70               | 9,67                | 6 | 1,61                |

Tabela 1: Medições de várias gotículas para determinação da carga elementar pelo método de Millikan: t1 e t2 são os tempos de descida e subida das gotículas.

## Alteração da carga

Com uma fonte radioativa (p.e. Am 241, 74 kBq) a carga das gotículas de óleo na câmara do capacitor pode ser alterada. A fonte radioativa deve ser posicionada em frente a janela de mica da unidade Millikan que é transparente às partículas  $\alpha$ .


## Observação com câmera de vídeo

Pode-se usar uma câmera de vídeo, no lugar do olho humano, para demonstração e observação do movimento das gotículas. As medidas de tempo do movimento tornam-se mais fáceis, e em geral mais acuradas, devido à melhor visibilidade. A intensidade de luz do dispositivo de iluminação do próprio aparato é suficiente para a observação com a câmera de vídeo.



Figura. Começo do ajuste p/ observação das gotas pela câmara de vídeo. UFES – Vitória.





Montagem do experimento de Millkan utilizando a Flex-cam para observação das gotas. (UFMG-Belo Horizonte) Observação: os multímetros não estão inclusos no conjunto fornecido.